B. Stevens and R. D. Small, Jr.

Department of Chemistry, University of South Florida, Tampa, Fla. 33620

(U.S.A.)

If the singlet (S_1) -triplet (T_1) energy separation of an aromatic sensitizer M exceeds the excitation energy (~8000cm⁻¹) of $0_2^{\ 1}\Delta_g$, processes 1-4 may contribute to the overall quenching of $M(S_1)$ by the $0_2^{\ 3}\Sigma_g$ ground state with respective probabilities a,b,c and d.

$$M(S_1) + O_2({}^{3}\Sigma) \longrightarrow M(T_1) + O_2({}^{1}\Delta) = 1.$$

$$\underline{b} \longrightarrow M(T_1) + O_2({}^{3}\Sigma) = 2.$$

$$\underline{c} \longrightarrow M(S_0) + O_2({}^{1}\Delta) = 3.$$

$$\underline{d} \longrightarrow M(S_0 + O_2({}^{3}\Sigma) = 4.$$

If each triplet state subsequently produces $0_2^{1}\Delta$ in the energy transfer process

$$M(T_1) + O_2(^{3}\Sigma) \longrightarrow M(S_0) + O_2(^{1}\Delta) \qquad 5.$$

the overall quantum yield of $O_2(\Delta)$ is given by

 $\gamma_{\Delta} = \gamma_{IS} + K[0_2](2\underline{a} + \underline{b} + \underline{c} - \gamma_{IS})/(1 + K[0_2])$ I where γ_{IS} and K denote the intersystem crossing efficiency and Stern Volmer oxygen quenching constant for $M(S_1)$ respectively. For M=1,3diphenylisobenzofuran (DPBF) in benzene

$$Y_{IS} = 0.06 \pm 0.03$$

 $2\underline{a} + \underline{b} + \underline{c} = 1.3_3 \pm 0.15$

The addition of azulene (Q) to this system introduces the additional processes

$$\begin{array}{ll} \mathsf{M}(\mathsf{S}_1) + \mathsf{Q} & \longrightarrow & \mathsf{M}(\mathsf{S}_0) + \mathsf{Q} & & \mathsf{G}. \\ \mathsf{M}(\mathsf{T}_1) + \mathsf{Q} & \longrightarrow & \mathsf{M}(\mathsf{S}_0) + \mathsf{Q} & & \mathsf{7}. \end{array}$$

which reduce the quantum yield of $0_{2}^{I}\Delta$ formation to γ_{A}^{Q} where

$$\left\{\frac{\gamma_{\Delta}}{\gamma_{\Delta}^{Q}}\left(1+\kappa_{Q}[Q]\right)^{-1}\right\}^{-1} = A + \frac{\kappa_{s}[O_{2}]}{\kappa_{7}[Q]}\left\{1+A\right\}$$
 II

and $A = (\underline{a} + \underline{c}) K[0_2] / \{ (a + b) K[0_2] + \gamma_{IS} \}$ (K_Q is the Stern-Volmer quenching constant associated with process 6). For DPBF in benzene A = 0.29 <u>+</u> 0.05 which with the condition a + b + c + d = 1 provides the alternatives

<u>a</u>	<u>b</u>	<u>c</u>	<u>d</u>
0.3	0.63	0.07	0
0.3 ₇	0.56	0	0.07

It is proposed that the partitioning of products from the quenching process $M(S_1) + O_2(^{3}\Sigma)$ arises from the primary process 1, the products of which undergo successive reactive re-encounters with each other to generate the products of processes 2 and 3 as shown in the sequence

$$M(S_{1}) + O_{2}(^{3}\Sigma) \longrightarrow M(T_{1}) + O_{2}(^{1}\Delta) \longrightarrow p_{T} \qquad \underline{a} = 1 - p_{T}$$

$$M(T_{1}) + O_{2}(^{3}\Sigma) \longrightarrow p_{T} \qquad \underline{b} = p_{T}(1 - p_{\Delta})$$

$$M(S_{0}) + O_{2}(^{1}\Delta) \longrightarrow p_{\Delta} \qquad \underline{c} = p_{T}p_{\Delta}$$

$$M(S_{0}) + O_{2}(^{3}\Sigma) \longrightarrow d = 0$$

In this case the partitioning factors are related to the re-encounter probabilities p_T and p_A as shown, or since

$$2\underline{a} + \underline{b} + \underline{c} = 1.33 = 2-p_T$$

 $p_T = 0.6_7$ and $p_A = \underline{c}/p_T \sim 0.1$

For two dynamically equivalent processes (between identical solute molecules in the same solvent) the rate constants k_i and k_j are related to the appropriate reactive re-encounter probabilities by¹

$$k_{i}(1-p_{i})/p_{i} = k_{j}(1-p_{j})/p_{j}$$

For the reaction

$$DPBF(S_0) + O_2(1_{\Delta}) \longrightarrow DPBFO_2$$

in benzene it has been found that^{1,2}

$$k = 7 \times 10^8 M^{-1} s^{-1}$$
 and $p = 0.067$

hence for any other bimolecular process between these molecules in this solvent

$$k(1-p)/p = 1.0 \times 10^{10} M^{-1} S^{-1}$$

whence for reactions

$$M(T_1) + O_2(^{1}\Delta) \longrightarrow M(T_1) + O_2(^{3}\Sigma)$$

$$P_T = 0.6_7 \text{ and } k = 2.0 \times 10^{10} \text{M}^{-1} \text{S}^{-1}$$

and

$$M(T_1) + O_2(^{3}\varepsilon) \longrightarrow M(S_0) + O_2(^{1}\Delta)$$

$$P_{\Delta} = 0.1 \text{ and } k = 1.1 \times 10^{9} M^{-1} S^{-1}$$

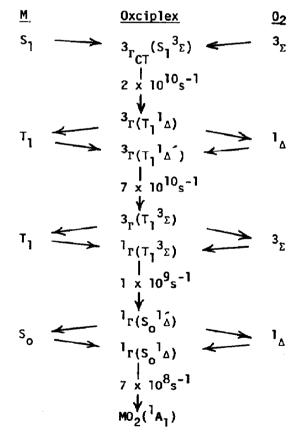
which are consistent with theoretical expectation 3 ; 4

With the experimental values of p and derived rate constants k, the Noyes pair model formulation⁵

provides estimates of the equilibrium statistical rate constant k^0 which describes the relaxation of the appropriate complex states ${}^{1,3}\Gamma_{1,}(M,O_{2})$ shown in the accompanying scheme.

References

- B. Stevens and R.R. Williams, Chem.Phys.Letters, <u>36</u> 100(1975).
 B. Stevens, J.A. Ors and M.L. Pinsky, Chem.Phys.Letters, <u>27</u> 157 (1974)
 C.K. Duncan and D.R. Kearns, Chem.Phys.Letters, <u>12</u> 306 (1971)
- 4. O.L.J. Gijzeman, F. Kaufman and G. Porter, J.Chem.Soc. Faraday II 69 78(1973). 5. R.M. Noyes in Progress in Reaction Kinetics. ed.G Porter, Pergamon,
- Oxford, 1 129(1961)



Dissociative Oxciplex Relaxation